Table S2: Fitted parameters for the most parsimonious model

Parameter	Description	Units	Value	95% Confidence interval
$oldsymbol{eta}_0$	Background transmission rate	$(\Delta t)^{-1}$	0.0013	0.0004-0.0028
$oldsymbol{eta_d}$	Spatial transmission coefficient	$(\Delta t)^{-1}(km)^{1-\varepsilon}$	0.84	0.26-2.3
$oldsymbol{eta_{ds}}$	Boost to $oldsymbol{eta}_d$ when schools are open	$(\Delta t)^{-1}(km)^{1-\varepsilon}$	3.0	1.4-6.3
μ	Exponent of dependence on recipient population size	none	0.27	0.11-0.44
γ	Exponent of distance in gravity model kernel	none	2.6	2.3-2.8
ε	Strength of density normalisation	none	0.87	0.80-0.94

The most parsimonious model has six non-zero parameters. These are given in the table together with their maximum likelihood values and confidence intervals, as determined by a drop of 1.96 in the profile likelihoods. Setting the other parameters to zero, the force of infection for location i can be written as:

$$\lambda_{i}(t) = \beta_{0} + (\beta_{d} + \beta_{ds}I_{i})N_{i}^{\mu} \frac{\sum_{j \in \Lambda} d_{i,j}^{-\gamma}}{\left[\sum_{j \neq i} d_{i,j}^{-\gamma}\right]^{\varepsilon}}$$

This force of infection is a rate and the units correspond to the time step Δt = half week.